
Parallel and Improved PageRank Algorithm for 
GPU-CPU Collaborative Environment 

Prasann Choudhari , Eikshith Baikampadi, Paresh Patil , Sanket Gadekar 

Department of Computer Engineering,  
Pimpri Chinchwad College of Engineering, Pune, India 

Abstract—The internet is a huge collection of websites in the 
order of 108 bytes. Around 90% of the world’s population uses 
search engines for getting relevant information. According to 
Wikipedia, more than 200 million Indians use the Internet 
every day. Thus the correct data retrieval least time domain is 
the most important task. Hence need of efficient and parallel 
PageRanking algorithm. All the existing implementations are 
cluster based and to process huge lists of data take awful lot of 
time. The difficulty in cluster based approach is latency among 
different nodes participating in the computation. Since 
internet has large distributions of weblinks, collaboration of 
partial results after processing is a major issue. Thus latency 
factor overcomes the performance achievement of parallel 
cluster computation. As complete list can be hosted on one 
data server, PCI based communication mechanism can be 
used as a solution in addition of high parallel computation 
power with GPUs. So our approach aims at providing a 
parallel solution to it. 

Keywords- GPU - Graphics Processing Unit, CUDA - 
Compute Unified Device Architecture, PCI - Peripheral 
Component Interconnect, SPMV Sparse Matrix Vector, SDK – 
Software Development Kit. 

I. INTRODUCTION 
We use the Internet to search for information on a daily 

basis. We use search engines to find out the useful 
information from the vast Internet. This is possible because 
the search engines are using a heuristic called PageRank 
[1]. It is nothing but a value to a web page that is assigned 
by a PageRanking algorithm. This algorithm scans all 
possible webpages and then calculates the rank accordingly 
given by a formula. Search engines show results according 
these ranks, which stand for the popularity of the page. The 
lower is the rank, more popular the page is. Traditional 
approaches use multi-CPU architecture and this is not a 
very good choice due to the communication overhead and 
the low processing power of CPU compared to GPU. 
Hence, designing a PageRanking algorithm efficiently 
modified for parallel GPU-CPU environment that achieves 
higher accuracy and consumes lesser time to evaluate the 
PageRank of a given webgraph. PageRank calculation is a 
non-trivial task. There are many challenges we encounter 
when calculating PageRank value of web pages. The first 
difficulty is that the input data is extremely huge; therefore, 
it requires a lot of computing effort. It is estimated that the 
number of web pages on World Wide Web is over 40 
billion. Even when the size of data we have is just a fraction 
of that number (few billion or hundreds of million), it is still 
not easy to compute efficiently. The second problem comes 
from a characteristic of the Web: it is dynamic. This 

characteristic is reflected in two aspects. First, the content 
of web pages may be changed along the time. This leads to 
the change of hyperlinks in the pages and therefore the 
change of the Web’s structure. Moreover, the size of the 
World Wide Web, which is determined by the number of 
web page, increased rapidly with billions of web pages 
being created every year. To make PageRank values always 
up-to-date despite these changes, PageRank calculation 
should to be carried out in as short a time period as possible. 
This comes to the need of deploying PageRank to run on 
high performance computing infrastructures such as 
specialized hardware or clusters including computing nodes. 

Designing a parallel algorithm for PageRank evaluation 
can be very crucial when it comes to designing hardware 
architecture to give maximum performance in low cost. 
Hence a parallel algorithm can achieve great heights in 
performance by harnessing the many cores available in a 
GPU. By operating in multiple GPU architecture we can 
process much larger chunks of webgraph and as a result 
attain a better throughput. This is beneficial for search 
engines and the CPU architecture have fewer loads and can 
do better in other CPU based applications. The rest of  the 
paper  is organized as follows. Section II gives the 
background and review of PageRank concept. Section III 
gives detailed description on previous work done on parallel 
approaches towards PageRanking algorithms. Section IV 
gives detailed description about our proposed model for 
improved parallel algorithm for PageRank computation 
followed by conclusion and references in section V and VI 
respectively. 

II. BACKGROUND

A. What is PageRank and how is it computed? 
Search engines run a special program in order to assess 

the PageRanks of websites. The program assigns a special 
score to the websites which is an indication towards the 
importance of the page. The overview of the idea is: A 
webpage is marked as important if it is pointed towards by 
other important webpages. To understand this thesis, we 
assume that each hyperlink is a recommendation; thus, a 
webpage which has more in-links or recommendations must 
be an important webpage. If the recommendation is from 
another important webpage, then it is considered to be more 
valuable than recommendations from less important 
webpages. Therefore, an important page is the page which 
(1) has many in-links, (2) has in-links from other important 
pages or (3) both. From that assumption, the original 
formula of PageRank [2] is defined as: 
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in which, r(Pi) is the PageRank of page Pi , B(Pi) is the set 

of pages pointing to Pi and |Pj| is the number of outlines. 
Since the PageRank of source pages Pj are still unknown, 
the above formula is converted to an iterative formula 
where the web page’s PageRank is calculated from other 
PageRank of the previous iteration. Let rk +1(Pi) denote 
PageRank of page Pi at iteration k+1 [1]. Then, 

 
The initial PageRank values of all pages are assigned to 1/n 
where n is the number of pages. The iterative process is 
repeated until PageRank scores converge to the final stable 
values. However, there is a problem with this definition of 
PageRank. In practice, with the above initial values, some 
pages will accumulate more and more PageRank after each 
iteration and refuse to share to other pages. This problem is 
possible because the web graph is not strongly connected 
and there are many pages without any out-links in the 
graph. This results in that there will be PageRank value 
sinking to zero at the end of iterative process; hence, it 
becomes hard to rank web pages using PageRank when 
these values are mostly 0. To overcome this challenge, Brin 
and Page introduce some adjustments: firstly, they replaced 
nodes with out-degree zero (called dangling nodes) by 
nodes linking to all other nodes; and secondly, they added a 
damping factor [2] which influencing the random walks of 
the random surfer process of the graph. Equation (2) can be 
written as 

 
Where α is the damping factor that descripts the 

probability of a user follows hyperlinks in the web graph. In 
the above equation. πk(T) which is row vector containing 
PageRank scores of N web pages at the kth iteration. α is a 
binary vector and its value is set to 1 if page is a dangling 
node else it is set to 0. 

 
B. Webgraph Representation 

The algorithm to calculate PageRank needs information 
related to webpages. This information is supplied to it by 
providing a Web Graph. Web Graph is a graph containing 
nodes representing webpages and directed edges to 
represent corresponding in-links and out-links. Search 
engines collect data from WWW by a program called Web 
crawler (or Web spider) which works like an automatic 
browser: it arrives at a web page, assesses hyperlinks in that 
page and follows those links to jump to other pages. Web 
crawlers create a copy of all visited page for later 
processing by a search engine such as indexing, displaying 
search results, etc. The Web graph is also constructed from 
this data. This graph is very huge, hence we need to store 
the data in an efficient way. Hence, usage of a special data 
structure is necessary. This data structure is similar to 
Binary Link Structure file [1] which contains the following 
fields: 

 
Figure 1: Binary Link Structure 

• Source ID - It is a 4-byte integer serial number or the 
index of the corresponding row tuple. 

• Out Degree - It is the 4-byte integer number of out-
links of the webpage. 

• Sequence of 4-byte integers representing a list of 
Destination IDs. 
 

III. PREVIOUS WORK DONE ON PARALLEL PAGERANK 

COMPUTATION 
There have been a few implementations of PageRank on 

CPU based infrastructures, including PC cluster [2,3,4] or 
P2P architectures [5]. These methods need many processors 
connected together via network; therefore, a common 
problem issued is that the communication overhead over the 
computation. Existing implementation of PageRanking 
algorithm using GPU consists of architectures mostly 
focused on implementing the SPMV problem efficiently [6, 
7, 8]. 
Another approach [1], comprises of an overview of 
PageRanking algorithm implemented on CUDA platform 
which addresses the drawbacks of huge number of nodes 
and their representation. They have used linear vectors to 
store the computed PageRank values and the nodes are 
stored in a special data structure called as Binary Link 
Structure [1]. This approach has been tested on not too-
large data sets. In the aforementioned paper [1], they have 
used CUDA threads to achieve parallelism where each 
CUDA thread takes one page-id and perform PageRank 
computation for out-links pages pointed by that source page 
sequentially. This implementation harnesses only a single 
CUDA block which provides 1024 threads. The large 
dataset is divided into chunks of 1024 tuples from the 
Binary Link Structure [1] which are acted upon 
simultaneously. 
 

 
Figure 2: Parallelism using Threads 

Prasann Choudhari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2003-2005

www.ijcsit.com 2004



The PageRank calculation was done iteratively in a loop 
which halted when the convergence condition was satisfied 
i.e. when the distance between two vectors πk and πk+1 was 
less than a particular threshold value [1]. The distance 
between two vectors is calculated by Chebyshev formula 
[10], which states that distance between two vectors is the 
maximum of the difference between corresponding 
individual elements of the two vectors. 

 

 
The work of finding the maximum of the individual 
differences has complexity O(n) if using a sequential 
algorithm that loop all elements of n-elements array, where 
n is the number of nodes. The implementation in [1], 
exploits GPU to find quickly the maximum value of an 
array by applying scan algorithm that presented in [11]. The 
idea of the algorithm is to build in parallel a balanced 
binary tree using bottom-up approach. The two nodes at the 
same level are compared with each other, the greater value 
will be used to make new root of the tree. The process 
repeated until only a single node, this node contains the 
maximum value of the element in the array. 
 

IV. OUR PROPOSED MODEL FOR IMPROVED 

PARALLELISM 
After detailed study of the PageRanking algorithms, we 

have concluded that the PageRank formula, cannot be 
altered anymore. Hence to achieve an improved parallel 
algorithm, there are two key points which have scope for 
optimization - Convergence condition and the efficient 
memory coalescing and utilization of CUDA blocks and 
threads. 
A. Conditional Model for Convergence 

For the implementation of convergence condition, instead 
of using Chebyshev Distance formula to calculate the 
maximum, which involves construction of a balanced 
binary tree, we propose a simpler and efficient way by using 
an overflow flag. The method includes finding the 
difference between individual elements of the two vectors 
πk and πk+1 . This operation is performed in just in O(1) on a 
GPU. We maintain an overflow flag which is modified as 
following. 

difference :=  
if ( difference  ) then 

flag := true 
Now based on the status of the flag, we can determine if the 
distance between two vectors exceeds the threshold, 
completely eliminating the need to find out the maximum 
difference. If flag is set to true, then we can say that the 
distance exceeds threshold. If flag is not set to true at all, 
then we can say that the distance hasn’t exceeded the 
threshold and the PageRank values are now stable. 
 
B. Improved Block-Thread Utilization 
 In this approach, we have attempted to maximize the 
number of pages whose pageranks are calculated 
simultaneously. In CUDA, there are 1024 threads per block 
and there are a maximum of 65535 such blocks.  

We assign a block to each tuple in the Binary Link 
Structure and Threads in that block will then calculate 
pageranks of all the out-links IDs of that source ID 
simultaneously. This gives us a higher level of parallelism 
and better performance. Hence a minimum of 65535 
pageranks are computed at any given instant (assuming all 
tuples have at least one out-links). The previous 
implementation provided a mere 1024 parallel 
computations. 
 

 
Figure 3: Improved Block-Thread utilization 

 

V. CONCLUSION 
In this paper, we have proposed an optimal parallel 

PageRanking algorithm, by efficiently utilizing the 
architectural benefits that CUDA provides. Clearly, our 
proposed approach increases the performance in terms of 
time taken to compute PageRank of a given dataset. 
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